December 05, 2017 Volume 13 Issue 45

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Leap forward for rechargeables: Solid-state magnesium battery a big step closer

A team of Department of Energy (DOE) scientists at the Joint Center for Energy Storage Research (JCESR) has discovered the fastest magnesium-ion solid-state conductor, a major step toward making solid-state magnesium-ion batteries that are both energy dense and safe.

The electrolyte, which carries charge back and forth between the battery's cathode and anode, is a liquid in all commercial batteries, which makes them potentially flammable, especially in lithium-ion batteries. A solid-state conductor, which has the potential to become an electrolyte, would be far more fire-resistant.

Argonne scientist Baris Key, shown on left at work in his nuclear magnetic resonance lab, worked with researchers at Berkeley Lab on the discovery of the fastest ever magnesium-ion solid-state conductor. [Credit: Argonne National Laboratory]

 

 

 

 

Researchers at DOE's Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory were working on a magnesium battery, which offers higher energy density than lithium, but were stymied by the dearth of good options for a liquid electrolyte, most of which tend to be corrosive against other parts of the battery. "Magnesium is such a new technology, it doesn't have any good liquid electrolytes," said Gerbrand Ceder, a Berkeley Lab Senior Faculty Scientist. "We thought, why not leapfrog and make a solid-state electrolyte?"

The material they came up with, magnesium scandium selenide spinel, has magnesium mobility comparable to solid-state electrolytes for lithium batteries. Their findings were reported in Nature Communications in a paper titled, "High magnesium mobility in ternary spinel chalcogenides." JCESR, a DOE Innovation Hub, sponsored the study, and the lead authors are Pieremanuele Canepa and Shou-Hang Bo, postdoctoral fellows at Berkeley Lab.

"With the help of a concerted effort bringing together computational materials science methodologies, synthesis, and a variety of characterization techniques, we have identified a new class of solid conductors that can transport magnesium ions at unprecedented speed," Canepa said.

Collaboration with MIT and Argonne
The research team also included scientists at MIT, who provided computational resources, and Argonne, who provided key experimental confirmation of the magnesium scandium selenide spinel material to document its structure and function.

Co-author Baris Key, a research chemist at Argonne, conducted nuclear magnetic resonance (NMR) spectroscopy experiments. These tests were among the first steps to experimentally prove that magnesium ions could move through the material as rapidly as the theoretical studies had predicted.

"It was crucial to confirm the fast magnesium hopping experimentally. It is not often that the theory and the experiment agree closely with each other," Key said. "The solid-state NMR experiments for this chemistry were very challenging and would not be possible without dedicated resources and a funding source such as JCESR. As we've shown in this study, an in-depth understanding of short- and long-range structure and ion dynamics will be the key for magnesium-ion battery research."

NMR is akin to magnetic resonance imaging (MRI), which is routinely used in medical settings, where it shows hydrogen atoms of water in human muscles, nerves, fatty tissue, and other biological substances. But researchers can also tune NMR frequency to detect other elements, including the lithium or magnesium ions that are found in battery materials.

The NMR data from the magnesium scandium selenide material, however, involved material of unknown structure with complex properties, making them challenging to interpret.

Canepa noted the challenges of testing materials that are so new. "Protocols are basically non-existent," he said. "These findings were only possible by combining a multi-technique approach (solid-state NMR and synchrotron measurements at Argonne) in addition to conventional electrochemical characterization."

Trying to do the impossible
The team plans to do further work to use the conductor in a battery. "This probably has a long way to go before you can make a battery out of it, but it's the first demonstration you can make solid-state materials with really good magnesium mobility through it," Ceder said. "Magnesium is thought to move slowly in most solids, so nobody thought this would be possible."

Additionally, the research identified two related fundamental phenomena that could significantly affect the development of magnesium solid electrolytes in the near future, namely, the role of anti-site defects and the interplay of electronic and magnesium conductivity, both published recently in Chemistry of Materials.

Bo, now an assistant professor at Shanghai Jiao Tong University, said the discovery could have a dramatic effect on the energy landscape. "This work brought together a great team of scientists from various scientific disciplines, and took the first stab at the formidable challenge of building a solid-state magnesium battery," he said. "Although currently in its infancy, this emerging technology may have a transformative impact on energy storage in the near future."

Gopalakrishnan Sai Gautam, another co-author who was an affiliate at Berkeley Lab and is now at Princeton, said the team approach made possible by a DOE hub such as JCESR was critical. "The work shows the importance of using a variety of theoretical and experimental techniques in a highly collaborative environment to make important fundamental discoveries," he said.

Ceder was excited at the prospects for the finding but cautioned that work remains to be done. "There are enormous efforts in industry to make a solid-state battery. It's the holy grail because you would have the ultimate safe battery. But we still have work to do. This material shows a small amount of electron leakage, which has to be removed before it can be used in a battery."

Funding for the project was provided by the DOE Office of Science through the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub. The Advanced Photon Source, a DOE Office of Science User Facility at Argonne, added vital data to the study regarding the structure of the solid conductor. The National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab, provided computing resources. Other co-authors on the paper are Juchaun Li of Berkeley Lab, William Richards and Yan Wang of MIT, and Tan Shi and Yaosen Tian of UC Berkeley.

Source: Lawrence Berkeley National Laboratory

Published December 2017

Rate this article

[Leap forward for rechargeables: Solid-state magnesium battery a big step closer]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy